Copied to
clipboard

G = C4211D10order 320 = 26·5

11st semidirect product of C42 and D10 acting via D10/C5=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4211D10, C10.152+ 1+4, (D4×D5)⋊5C4, D49(C4×D5), (C4×D4)⋊7D5, C4⋊C456D10, (D4×C20)⋊9C2, D2023(C2×C4), (C4×D20)⋊24C2, (D4×Dic5)⋊8C2, (C22×C4)⋊4D10, (C4×C20)⋊16C22, C22⋊C453D10, D208C414C2, (C2×D4).245D10, C42⋊D511C2, C20.67(C22×C4), C10.43(C23×C4), (C2×C10).89C24, C4⋊Dic573C22, Dic54D445C2, C2.3(D46D10), C2.3(D48D10), (C2×C20).587C23, (C22×C20)⋊36C22, C54(C22.11C24), (C4×Dic5)⋊11C22, D10.17(C22×C4), C23.D548C22, D10⋊C462C22, C22.32(C23×D5), (C2×D20).266C22, (D4×C10).253C22, C10.D464C22, Dic5.17(C22×C4), (C22×Dic5)⋊8C22, (C23×D5).38C22, C23.168(C22×D5), (C22×C10).159C23, (C2×Dic5).211C23, (C22×D5).178C23, (C2×D4×D5).9C2, C4.32(C2×C4×D5), (C4×D5)⋊3(C2×C4), C5⋊D47(C2×C4), (C5×D4)⋊22(C2×C4), (C4×C5⋊D4)⋊40C2, C22.2(C2×C4×D5), (C2×C4×D5)⋊46C22, C4⋊C47D514C2, (C5×C4⋊C4)⋊56C22, C2.24(D5×C22×C4), (D5×C22⋊C4)⋊27C2, (C22×D5)⋊10(C2×C4), (C2×C10).9(C22×C4), (C2×D10⋊C4)⋊34C2, (C5×C22⋊C4)⋊63C22, (C2×C4).282(C22×D5), (C2×C5⋊D4).118C22, SmallGroup(320,1217)

Series: Derived Chief Lower central Upper central

C1C10 — C4211D10
C1C5C10C2×C10C22×D5C23×D5C2×D4×D5 — C4211D10
C5C10 — C4211D10
C1C22C4×D4

Generators and relations for C4211D10
 G = < a,b,c,d | a4=b4=c10=d2=1, ab=ba, cac-1=dad=a-1, bc=cb, dbd=a2b, dcd=c-1 >

Subgroups: 1294 in 338 conjugacy classes, 151 normal (43 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C5, C2×C4, C2×C4, C2×C4, D4, D4, C23, C23, D5, C10, C10, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C24, Dic5, Dic5, C20, C20, D10, D10, C2×C10, C2×C10, C2×C10, C2×C22⋊C4, C42⋊C2, C4×D4, C4×D4, C22×D4, C4×D5, C4×D5, D20, C2×Dic5, C2×Dic5, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C2×C20, C5×D4, C22×D5, C22×D5, C22×D5, C22×C10, C22.11C24, C4×Dic5, C4×Dic5, C10.D4, C4⋊Dic5, D10⋊C4, D10⋊C4, C23.D5, C4×C20, C5×C22⋊C4, C5×C4⋊C4, C2×C4×D5, C2×C4×D5, C2×D20, D4×D5, C22×Dic5, C2×C5⋊D4, C22×C20, D4×C10, C23×D5, C42⋊D5, C4×D20, D5×C22⋊C4, Dic54D4, C4⋊C47D5, D208C4, C2×D10⋊C4, C4×C5⋊D4, D4×Dic5, D4×C20, C2×D4×D5, C4211D10
Quotients: C1, C2, C4, C22, C2×C4, C23, D5, C22×C4, C24, D10, C23×C4, 2+ 1+4, C4×D5, C22×D5, C22.11C24, C2×C4×D5, C23×D5, D5×C22×C4, D46D10, D48D10, C4211D10

Smallest permutation representation of C4211D10
On 80 points
Generators in S80
(1 70 30 53)(2 54 21 61)(3 62 22 55)(4 56 23 63)(5 64 24 57)(6 58 25 65)(7 66 26 59)(8 60 27 67)(9 68 28 51)(10 52 29 69)(11 45 73 40)(12 31 74 46)(13 47 75 32)(14 33 76 48)(15 49 77 34)(16 35 78 50)(17 41 79 36)(18 37 80 42)(19 43 71 38)(20 39 72 44)
(1 35 6 40)(2 36 7 31)(3 37 8 32)(4 38 9 33)(5 39 10 34)(11 70 78 58)(12 61 79 59)(13 62 80 60)(14 63 71 51)(15 64 72 52)(16 65 73 53)(17 66 74 54)(18 67 75 55)(19 68 76 56)(20 69 77 57)(21 41 26 46)(22 42 27 47)(23 43 28 48)(24 44 29 49)(25 45 30 50)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)
(1 10)(2 9)(3 8)(4 7)(5 6)(11 72)(12 71)(13 80)(14 79)(15 78)(16 77)(17 76)(18 75)(19 74)(20 73)(21 28)(22 27)(23 26)(24 25)(29 30)(31 43)(32 42)(33 41)(34 50)(35 49)(36 48)(37 47)(38 46)(39 45)(40 44)(51 54)(52 53)(55 60)(56 59)(57 58)(61 68)(62 67)(63 66)(64 65)(69 70)

G:=sub<Sym(80)| (1,70,30,53)(2,54,21,61)(3,62,22,55)(4,56,23,63)(5,64,24,57)(6,58,25,65)(7,66,26,59)(8,60,27,67)(9,68,28,51)(10,52,29,69)(11,45,73,40)(12,31,74,46)(13,47,75,32)(14,33,76,48)(15,49,77,34)(16,35,78,50)(17,41,79,36)(18,37,80,42)(19,43,71,38)(20,39,72,44), (1,35,6,40)(2,36,7,31)(3,37,8,32)(4,38,9,33)(5,39,10,34)(11,70,78,58)(12,61,79,59)(13,62,80,60)(14,63,71,51)(15,64,72,52)(16,65,73,53)(17,66,74,54)(18,67,75,55)(19,68,76,56)(20,69,77,57)(21,41,26,46)(22,42,27,47)(23,43,28,48)(24,44,29,49)(25,45,30,50), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,10)(2,9)(3,8)(4,7)(5,6)(11,72)(12,71)(13,80)(14,79)(15,78)(16,77)(17,76)(18,75)(19,74)(20,73)(21,28)(22,27)(23,26)(24,25)(29,30)(31,43)(32,42)(33,41)(34,50)(35,49)(36,48)(37,47)(38,46)(39,45)(40,44)(51,54)(52,53)(55,60)(56,59)(57,58)(61,68)(62,67)(63,66)(64,65)(69,70)>;

G:=Group( (1,70,30,53)(2,54,21,61)(3,62,22,55)(4,56,23,63)(5,64,24,57)(6,58,25,65)(7,66,26,59)(8,60,27,67)(9,68,28,51)(10,52,29,69)(11,45,73,40)(12,31,74,46)(13,47,75,32)(14,33,76,48)(15,49,77,34)(16,35,78,50)(17,41,79,36)(18,37,80,42)(19,43,71,38)(20,39,72,44), (1,35,6,40)(2,36,7,31)(3,37,8,32)(4,38,9,33)(5,39,10,34)(11,70,78,58)(12,61,79,59)(13,62,80,60)(14,63,71,51)(15,64,72,52)(16,65,73,53)(17,66,74,54)(18,67,75,55)(19,68,76,56)(20,69,77,57)(21,41,26,46)(22,42,27,47)(23,43,28,48)(24,44,29,49)(25,45,30,50), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,10)(2,9)(3,8)(4,7)(5,6)(11,72)(12,71)(13,80)(14,79)(15,78)(16,77)(17,76)(18,75)(19,74)(20,73)(21,28)(22,27)(23,26)(24,25)(29,30)(31,43)(32,42)(33,41)(34,50)(35,49)(36,48)(37,47)(38,46)(39,45)(40,44)(51,54)(52,53)(55,60)(56,59)(57,58)(61,68)(62,67)(63,66)(64,65)(69,70) );

G=PermutationGroup([[(1,70,30,53),(2,54,21,61),(3,62,22,55),(4,56,23,63),(5,64,24,57),(6,58,25,65),(7,66,26,59),(8,60,27,67),(9,68,28,51),(10,52,29,69),(11,45,73,40),(12,31,74,46),(13,47,75,32),(14,33,76,48),(15,49,77,34),(16,35,78,50),(17,41,79,36),(18,37,80,42),(19,43,71,38),(20,39,72,44)], [(1,35,6,40),(2,36,7,31),(3,37,8,32),(4,38,9,33),(5,39,10,34),(11,70,78,58),(12,61,79,59),(13,62,80,60),(14,63,71,51),(15,64,72,52),(16,65,73,53),(17,66,74,54),(18,67,75,55),(19,68,76,56),(20,69,77,57),(21,41,26,46),(22,42,27,47),(23,43,28,48),(24,44,29,49),(25,45,30,50)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80)], [(1,10),(2,9),(3,8),(4,7),(5,6),(11,72),(12,71),(13,80),(14,79),(15,78),(16,77),(17,76),(18,75),(19,74),(20,73),(21,28),(22,27),(23,26),(24,25),(29,30),(31,43),(32,42),(33,41),(34,50),(35,49),(36,48),(37,47),(38,46),(39,45),(40,44),(51,54),(52,53),(55,60),(56,59),(57,58),(61,68),(62,67),(63,66),(64,65),(69,70)]])

74 conjugacy classes

class 1 2A2B2C2D2E2F2G2H···2M4A···4J4K···4T5A5B10A···10F10G···10N20A···20H20I···20X
order122222222···24···44···45510···1010···1020···2020···20
size1111222210···102···210···10222···24···42···24···4

74 irreducible representations

dim11111111111112222222444
type++++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2C2C4D5D10D10D10D10D10C4×D52+ 1+4D46D10D48D10
kernelC4211D10C42⋊D5C4×D20D5×C22⋊C4Dic54D4C4⋊C47D5D208C4C2×D10⋊C4C4×C5⋊D4D4×Dic5D4×C20C2×D4×D5D4×D5C4×D4C42C22⋊C4C4⋊C4C22×C4C2×D4D4C10C2C2
# reps1112211221111622424216244

Matrix representation of C4211D10 in GL6(𝔽41)

100000
010000
0000400
0000040
001000
000100
,
900000
090000
0021300
00283900
0000213
00002839
,
4070000
3470000
006600
0035100
00003535
0000640
,
100000
7400000
006600
0013500
00003535
0000406

G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,40,0,0,0,0,0,0,40,0,0],[9,0,0,0,0,0,0,9,0,0,0,0,0,0,2,28,0,0,0,0,13,39,0,0,0,0,0,0,2,28,0,0,0,0,13,39],[40,34,0,0,0,0,7,7,0,0,0,0,0,0,6,35,0,0,0,0,6,1,0,0,0,0,0,0,35,6,0,0,0,0,35,40],[1,7,0,0,0,0,0,40,0,0,0,0,0,0,6,1,0,0,0,0,6,35,0,0,0,0,0,0,35,40,0,0,0,0,35,6] >;

C4211D10 in GAP, Magma, Sage, TeX

C_4^2\rtimes_{11}D_{10}
% in TeX

G:=Group("C4^2:11D10");
// GroupNames label

G:=SmallGroup(320,1217);
// by ID

G=gap.SmallGroup(320,1217);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,387,1123,80,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^10=d^2=1,a*b=b*a,c*a*c^-1=d*a*d=a^-1,b*c=c*b,d*b*d=a^2*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽